Rabu, 18 November 2015

Kriptografi

Kriptografi
Aritmatika modulo dan bilangan prima mempunyai banyak aplikasi dalam ilmu komputer salah satu aplikasinya yang terpenting adalah ilmu kriptografi. Kriptografi (cryptography) berasal dari Bahasa Yunani: “cryptós” artinya “secret” (rahasia), sedangkan “gráphein” artinya “writing” (tulisan). Jadi, kriptografi berarti “secret writing” (tulisan rahasia). Ada beberapa definisi kriptografi yang telah dikemukakan di dalam berbagai literatur. Definisi yang dipakai di dalam buku-buku yang lama (sebelum tahun 1980-an) menyatakan bahwa kriptografi adalah ilmu dan seni untuk menjaga kerahasian pesan dengan cara menyandikannya ke dalam bentuk yang tidak dapat dimengerti lagi maknanya. Definisi ini mungkin cocok pada masa lalu di mana kriptografi digunakan untuk keamanan komunikasi penting seperti komunikasi di kalangan militer, diplomat, dan mata-mata. Namun saat ini kriptografi lebih dari sekadar privacy, tetapi juga untuk tujuan data integrity, authentication, dan non-repudiation.
Definisi yang dipakai mengutip definisi yang dikemukakan di dalam [SCH96]:
Kriptografi adalah ilmu dan seni untuk menjaga keamanan pesan
(Cryptography is the art and science of keeping messages secure)
Sebagai pembanding, selain definisi tersebut di atas, terdapat pula definisi yang dikemukakan di dalam [MEN96]:
Kriptografi adalah ilmu yang mempelajari teknik-teknik matematika yang berhubungan dengan aspek keamanan informasi seperti kerahasiaan, integritas data, serta otentikasi. Kata “seni” di dalam definisi di atas berasal dari fakta sejarah bahwa pada masa-masa awal sejarah kriptografi, setiap orang mungkin mempunyai cara yang unik untuk merahasiakan pesan. Cara-cara unik tersebut mungkin berbeda-beda pada setiap pelaku kriptografi sehingga setiap cara menulis pesan rahasia pesan mempunyai nilai estetika tersendiri sehingga kriptografi berkembang menjadi sebuah seni merahasiakan pesan (kata “graphy” di dalam “cryptography” itu sendiri sudah menyiratkan sebuah seni). Kita akan melihat contoh-contoh teknik keriptografi dari zaman dahulu hingga zaman sekarang sehingga kita dapat mamahami
bahwa kriptografi dapat dipandang sebagai sebuah seni merahasiakan pesan. Pada perkembangan selanjutnya, kriptografi berkembang menjadi sebuah disiplin ilmu sendiri karena teknik-teknik kriptografi dapat diformulasikan secara matematik sehingga menjadi sebuah metode yang formal. Dalam kriptografi terdapat beberapa istilah khusus. Pesan yang dirahasiakan dinamakan plainteks (teks jelas dan dapat dimengerti), sedangkan pesan hasil penyamaran disebut chiperteks (teks tersandi). Proses penyamaran dari plainteks ke chiperteks disebut enkripsi dan proses pembalikan dari chiperteks ke plainteks disebut deskripsi. Enkripsi dan deskripsi pada suatu proses penyamaran pesan memiliki suatu kunci tersendiri. Dan hanya orang yang berhak yang mengetahui kunci tersebut.
Chiperteks meskipun sudah tidak bersifat rahasia lagi, namun isinya sudah tidak jelas dan tidak dapat dimengerti maksudnya. Hanya orang yang berhak saja yang dapat mengembalikan pesan tidak jelas tersebut menjadi pesan semula dengan menggunakan suatu kunci.
Kriptografi juga dapat dituliskan dalam notasi matematis. Jika chiperteks dilambangkan dengan C dan plainteks dilambangkan dengan P, maka fungsi enkripsi E memetakan P ke C, dapat ditulis sebagai berikut
E(P) = C
Pada proses kebalikannya yaitu proses deskripsi, fungsi deskripsi D memetakan C ke P, dapat
ditulis sebagai berikut
D(C) = P
Karena proses enkripsi kemudian deskripsi mengembalikan pesan ke pesan asal, maka kesamaan berikut harus benar.
D(E(P)) = P
4. Hubungan Teori Bilangan Bulat dengan Kriptografi
Seperti yang telah diungkapkan diatas bahwa kriptografi sangat erat hubungannya dengan matematika diskrit terutama fungsi dan teori bilangan bulat yang berisi tentang.
- Integer dan sifat-sifat pembagian
- Algoritma Euclidean
- Aritmetika modulo
- Bilangan prima
Hal yang diungkapkan di atas sangat relevan karena saat ini kriptografi modern tidak lagi mendasarkan kekuatan kriptografi pada algoritmanya. Namun kriptografi saat ini mendasarkan kekuatan kriptografinya pada kunci. Sebelum melangkah lebih jauh, alangakah lebih baiknya jika dijelaskan mengenai kekuatan kriptrografi berdasarkan algoritma maupun kunci sebagai berikut.
Algoritma kriptografi atau chipper adalah fungsi matematika yang digunakan untuk enkripsi dan deskripsi. Kekeuatan suatu algoritma kriptografi diukur dari banyaknya kerja yang dibutuhkan untuk memecahkan data chipperteks menjadi plainteksnya. Semakin banyak usaha yang diperlukan, yang berarti semakin banyak waktu yang dubutuhkan, maka semakin kuat algoritma kriptografinya, yang berarti semakin aman digunakan untuk menyandikan pesan.
Jika kekuatan kriptografi ditentukan dengan menjaga kerahasiaan algoritmanya, maka algoritma kriptografinya dinamakan algoritma restricted. Misalkan di dalam sebuah kelompok orang meraka sepakat untuk menyadikan setiap pesan-pesan dengan algoritma yang sama, Algoritmanya adalah mempertukarkan setiap kata karakter pertama dengan karakter kedua, karakter ketiga dengan karakter keempat dan seterusnya.
Contohnya,
Plainteks : STRUKTUR DISKRIT
Chiperteks : TSURTKRU IDKSIRT
Untuk mendeskripsikan pesan, algoritma yang sama digunakan kembali. Sayangnya, algoritma restricted tidak cocok saat ini. Bila salah seorang keluar dari kelompok, maka algoritma penyandian pesan harus diubah lagi karena kerahasiaannya tidak lagi dapat diandalkan. Kriptografi modern tidak lagi mendasarkankekuatan pada algoritmanya. Jadi algoritma tidak lagi dirahasiakan dan boleh diketahui oleh umum. Kekuatan kriptografinya terletak pada kunci, yang berupa dereten karakter atau deretan bilangan bulat, dijaga kerahasiaannya. Hanya orang uang mengetahui kunci yang dapat melakukan enkripsi dan deskripsi. Kunci ini analog fungsinya dengan password pada sistem komputer, PIN pada ATM atau kartu kredit. Bedanya jika password bertujuan untuk otorisasi akses, maka kunci pada kriptografi digunakan  pada proses enkripsi dan deskripsi. Kriptografi yang mendasarkan kekuatan pada kunci sering menggunakan dasar teori bilangan bulat diatas sebagai dasar algoritma dan juga kuncinya. 

Tidak ada komentar:

Posting Komentar